skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bulut, Muhammed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adaptive bitrate (ABR) algorithms play a critical role in video streaming by making optimal bitrate decisions in dynamically changing network conditions to provide a high quality of experience (QoE) for users. However, most existing ABRs suffer from limitations such as predefined rules and incorrect assumptions about streaming parameters. They often prioritize higher bitrates and ignore the corresponding energy footprint, resulting in increased energy consumption, especially for mobile device users. Additionally, most ABR algorithms do not consider perceived quality, leading to suboptimal user experience. This article proposes a novel ABR scheme called GreenABR+, which utilizes deep reinforcement learning to optimize energy consumption during video streaming while maintaining high user QoE. Unlike existing rule-based ABR algorithms, GreenABR+ makes no assumptions about video settings or the streaming environment. GreenABR+ model works on different video representation sets and can adapt to dynamically changing conditions in a wide range of network scenarios. Our experiments demonstrate that GreenABR+ outperforms state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 57% in data consumption while providing up to 25% more perceptual QoE due to up to 87% less rebuffering time and near-zero capacity violations. The generalization and dynamic adaptability make GreenABR+ a flexible solution for energy-efficient ABR optimization. 
    more » « less
  2. Network Function Virtualization (NFV) platforms consume significant energy, introducing high operational costs in edge and data centers. This paper presents a novel framework called GreenNFV that optimizes resource usage for network function chains using deep reinforcement learning. GreenNFV optimizes resource parameters such as CPU sharing ratio, CPU frequency scaling, last-level cache (LLC) allocation, DMA buffer size, and packet batch size. GreenNFV learns the resource scheduling model from the benchmark experiments and takes Service Level Agreements (SLAs) into account to optimize resource usage models based on the different throughput and energy consumption requirements. Our evaluation shows that GreenNFV models achieve high transfer throughput and low energy consumption while satisfying various SLA constraints. Specifically, GreenNFV with Throughput SLA can achieve 4.4× higher throughput and 1.5× better energy efficiency over the baseline settings, whereas GreenNFV with Energy SLA can achieve 3× higher throughput while reducing energy consumption by 50%. 
    more » « less
  3. Adaptive bitrate (ABR) algorithms aim to make optimal bitrate de- cisions in dynamically changing network conditions to ensure a high quality of experience (QoE) for the users during video stream- ing. However, most of the existing ABRs share the limitations of predefined rules and incorrect assumptions about streaming pa- rameters. They also come short to consider the perceived quality in their QoE model, target higher bitrates regardless, and ignore the corresponding energy consumption. This joint approach results in additional energy consumption and becomes a burden, especially for mobile device users. This paper proposes GreenABR, a new deep reinforcement learning-based ABR scheme that optimizes the energy consumption during video streaming without sacrificing the user QoE. GreenABR employs a standard perceived quality metric, VMAF, and real power measurements collected through a streaming application. GreenABR’s deep reinforcement learning model makes no assumptions about the streaming environment and learns how to adapt to the dynamically changing conditions in a wide range of real network scenarios. GreenABR outperforms the existing state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 60% in data consumption while achieving up to 22% more perceptual QoE due to up to 84% less rebuffering time and near-zero capacity violations. 
    more » « less
  4. With the emergence of data deluge, the energy footprint of global data movement has surpassed 100 terawatt hours, costing more than 20 billion US dollars to the world economy. During an active data transfer, depending on the number of hops between the source and destination, the networking infrastructure consumes between 10% - 75% of the total energy, and the rest is consumed by the end systems. Even though there has been extensive research on reducing the power consumption at the networking infrastructure, the work focusing on saving energy at the end systems has been limited to the tuning of a few application-level parameters. In this paper, we introduce a novel cross-layer optimization framework which jointly considers application-level and kernel-level parameters to minimize the energy consumption without sacrificing from the transfer throughput. We present three different algorithms which can dynamically tune the CPU frequency level, number of active CPU cores, number of active transfer threads, number of parallel TCP streams, and the level of transfer command pipelining to achieve different user-set goals. Experimental results show that our proposed algorithms outperform the state-of-the-art solutions, achieving up to 80% higher throughput while consuming 48% less energy. 
    more » « less